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Abstract

Monitoring of complex continuous physical sys-
{cms has been traditionally accomplished in
compulcr-based process control soft ware by onc or
both of the following mcthods: 1) establishin g limit
checks for sensors and raising an alarm whenever a
sensor’'svaluccrosscs onc of these thresholds, and
2) comparing predicted values from a simulation
to actual sensor valucs and flagging discrepancics.
These anomaly detection techniques arcnot as ro-
bust as they need lobe. Failures can manifest in
ways which arc not captured by these traditional
methods. Furthermore, some anomal ous behaviors
arc more naturally detecied at the Ievel of global
interactions affecting multiple sensors,

Wc describe exiensions 10 the traditional techniques
for anomaly dctection, as well as ncw anomaly
detection techniques based on alternatc models of
what distinguishes normal from abnormal behav-
ior. Some of thesc techniques are designed to cap-
turc anomalics at individual sensors; some detect
anomalies across collcctions of sensors. Toassist
in rcasoning about complex global behaviors, wc
construct and simulate a causal model of the physi-
cal sysiem being monitored.

These techniques bave been tested on data from the
Environmental Control and Life Support System
(HCL.SS) of Space Station Freedom (SSF) and arc
being applied in advanced monitoring prototypes
for the SSF External Active Thermal Control Sys-
tem (EATCS) of SSE and the Environmental Emer-
gency and Consumables Management (EECOM)
subsystem of th¢ Space Shuttle,

1 Introduct ion

Mission operations personnclat NASA have the task of de-
termining, from moment 10 moment, whether a space plat-
form is exhibiting behavior which is in any way anomalous,
which could disrupt the operation of the platform, and in the
worst casc, could represent a loss of ability to achicve mission
goals. A traditional technique for assisting mission operators
in space platform health analysis is the establishment of alarm
thresholds for sensors, typically indexed by operating mode,
which summarizc which ranges of sensor values imply the

existence of anomalics. Another established technique for
anomaly defection is the comparison of predicted values from
a simulation to actual values received in telemetry. 1 lowever,
experienced mission operators reason aboul more than alarm
threshold crossings and discrepancics between predicted and
actualto detect anomalics: (hey may ask whether a sensor is
behaving differently than it has in the past, whether a current
behavior may lead to a global perturbation or whether a cur-
rent behavior may lead 10- the particular bane of operators -
arapidly developing alarmscquence.

A fault which propagates through a system faster thanthe
sensor polling ralc can create a situation wbhcrc, between onc
sampling and the next, the number of sensors in alarm goes
from zero 10 lens or more. Information about thc ordering of
events is lost. in ibis kind of cicrgency situation, opcrators
can experience information over’load and a compromising of
their ability 10 interpretthe sensor data.

Our approach tointroducing antomation into real-time sys-
tems monitoring is based on (wo obscrvat ions: 1) mission
opecrators employ multiple methods for recognizing anoma-
lies, and 2) mission opcrators do not and should notinter-
pret all sensor dataall of the time, The subject of this
paper is an approach to determining from moment 10 mo-
ment which subsct of the available sensor data for a sys-
tem is mostinformative about the presence of, or polen-
tial for, anomalics occurring within the system. Wc term
this process sensor selection and wc have implemented a
prototype sclective monitoring system called SELMON [7;
8L,

The SEI_ MONsystem has its origins in a sensor plan-
ning system called GRIPE [71 which planned information
gathering activitics to verify the exccution of robot task
plans. Other model-based monitoring Systems include Dvo-
rak’s M IMIC, which performs robust discrepancy detection
for continuous dynamic systems [9; 101, and DcCoste’s
DATMI, which infers systemstates from incomplele sen-
sor data [51. The SELMON work complements other work
within NASA which has focused on empirical and modcl-
base.d methods for fault diagnosis of acrospace platforms [1;
13,111

The organization of (his paper is as follows: First we de-
scribe sensor importance measures used (o identify the pres-
ence of anomalies in amonitored system, and 10 appraise the
relevance of different sensors for reporting on those anoma-
lies. Two of these measures arc cxtensions of the traditional
techniques of limit sensing and discrepancy detection. The
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Figure 1: SE1.MON Architccture.

seven measures fall into three categorics: those which con-
cern themselves with data provided by single sensors, those
which utilize a simulation of thesystem being monitored, and
those which utilize a causal model of the system being moni-
tored. As partof our discussion of the usc of causal modcling
and rcasoning, wc bricfly describe our event-driven causal
simulator and our causal modcling language.

Next we describe the test and application domains we arc
working with, providing mos(dctail on the SSF EATCS. Then
wc report and discuss results on empirically evaluating the
performance of the SELMON systcm on data from the SS1
F:CI .SS testbed. As part of this section, we describe how
SEI.MON dectected an anomaly which the traditional moni-
toring methods faii 10 detect. Finally, we conclude with some
thoughts on future rescarch and applications and a summary.

2 Approach: Selective Monitoring

How dots an intelligent agent — human or machine - observ-
ing a complex physical system, decide when somcthing is
going wrong? Abnormal bchavior is always defined asa dce-
parture from normal behavior. Unfortunately, there appears
10 be no single, crisp definition of “normal” behavior. Inthe
traditional monitoring technique of limit sensing, normal be-
havior is predefined by nominal value ranges for sensors. A
fundamental limitation of this approach is the lack of sensitiv -
ity to context. A Single fault may manifest in different ways,
depending on the configuration Of the sy stem when the fault
occurs. The compiled notion of an alarm threshold may not
capture these subtletics in manifestation. Another limitation
is lilt purclylocal View of Sensors taken by the limit sens-
ing techinique. Itis possible for a system to exhibit a pattern
of sensor values, each value in its respective nominal range,
which is nonctheless inconsistent. Finally, il is never possible
toanlicipate all fault modes of a systcm. Since alarm ranges
arc predefined during a design analysis in which fault modes
of the system arc enumcerated, a new fault behavior may noi
trigger a predefined alarm at all.

10 the other traditional monitoring technique of discrepancy
detection, normal behavior is obtained by simulating amodel
of the system being monitored. This approach avoids the
limitations of tile limit sensing approach. Normal behavior
is fully context-sensitive, being derived Via simulation from
currentstate information. And in principle, new faults can be
detected because there is no closed-world assumption based

on previously and statically enumcrated known faults. How-
cver, the modci-based approach of discrepancy detection has
its own limitations, The approachis only as good as the sys-
tem model, and some behaviors, e.g., non-lincar behaviors,
cannot be modeled with high fidelity with existing techniques.
In addition, normal system behavior typically changes with
time, and the modelmust Continue 10 cvolve, The modeling
process must continue both because any long-lived system
will degrade, and because a sysicm may be used for different
purposcs throughoutits i fetime. A good example of the latter
is the Voyager 2 mission and spacccraft which were, respec-
tively, replanned and reprogrammed 10 compensate for lower
lightlevels for the extended mission to Uranus and Neptune
[121.

Noting the limitations of the cxisting monitoring tech-
niqucs, we have developed an approach to monitoring which is
designed 10 make tile anomaly dcicection process more robust,
specifically 10 reduce lilt number of undetected anomalics
(falsc negatives). Towards this cad, we introduce multiple
anomal y modecls, scven in all | each employing a diffcrent
notion of “normal” behavior. Two of the seven arc based
on the traditional monitoring techniques. For each anomaly
model there is a sensor importance measure., These mea-
sures determine why, at a particular moment, onc Sensor may
be more worlhy of operator attention another. The anomaly
modcls and sensor importance measures arc based on con-
cepts from model-based reasoning, statistics, and information
thcory. While any singic one of these sensor importance mea-
sures Jnay fail todetect an anomaly, we willdemonstrate how
collectively, they provide a finer safcly net than the traditional
monitoring techniques.

During each timestep all sensors arc scored according 10
these sensor importance measures. The scores arc uscd as a
basis for an ordering on the sensors.Sce Figure 1,

These sensor scoring measures are partitioned into two
broad catcgorics. The first sct - empirical methods - rciy
oncurrent and historical data 10 determing imporlance, and
lake a purely local view of sensors, These measures include
surprise, alarm, anticipaie alarm, and value change. The
alarm measure is bascd onthe traditional notion of limif sens-
ing. Mcasurcs from the second set -- modcl-based methods

cmploy a model of the system and an event-driven simu-
lation capability to reason about current and expected future
system performance 10 delermine sensor importance. These
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Figure 2: Surprise of different scnsor values and frequency distributions.

measures include deviation, sensitivity, and cascading alarms.
The deviation measure is based on the traditional notion of
discrepancy detection. The last lwo measures, seasitivity and
cascading alarms, perform explicil causal reasoning on the
modcl of a systcm,

This paper will concentrate on our n~odcl-based monitoring
mecthods, providing most detail on our usc of event-driven
simulation and causal reasoning techniques. More detail on
our empirical monitoring methods can be found in [81.

2.1 Empirical Anomaly Detection Methods

In this section, wc briefly describe the empirical methods that
we usc fodeterming, from a local viewpoint, when a Sensor is
reporting anomalous behavior, There arc four empirical sen-
sor importance measures: surprise, alarm, anticipate alarm,
and value change. These measures usc knowledge about each
individual sensor, withoutknowledge of any relations among,
Sensors.

Surprise

An appealing way (0 assess whether current behavior is
anomalous ornot is via comparison to past behavior. This
is the cssence of the surprise measure. It is designed to
highlight a sensor which behaves otlicr thanit has historically,
Specifically, surprise uscs the historical frequency distribution
for the sensor in two ways: To determine the likelihood of
the given current value of the sensor (unusualness), and to
examinc the relative likelihoods of different values of the
sensor (informativeness). 11is those sensors which display
unlikely values when other values of the sensor arc more
likely which gcta high surprise score. Surpriseis not high if
the only reason a sensor’s value is unlikely is that there arc
many possible values for the sensor, al equally unlikely. See
Figure 2.

The informativeness component of t hc surprise measure
provides the key 10 detecting a subtic anomal y which is missed
by both limit sensing and discrepancy detection,as wilt be
discussed below,

Alarm

Alarm thresholds for sensors, indexed by opcrating mode,
typicall yarc established through an off-line anal ysis of system

design. The notion of alars in SELLMON cxtends the usual
onc bit of information (the sensor is in alarm or it is not), and
also reporls how much of the alarm rangehas been traversed.
Thus a sensor which has gone deep into alarm gels a higher
score than onc which has just crossed overthealarm threshold.

Alarm Anticipation

The alarmanticpation measure in SE1.MON performs a
simple form of trend anal ysis 10 dccidc whether or not a sensor
is expected to be in alarm in the future. A straightforward
curve fitis used to project when the sensor will next cross an
alarm threshold, in either direction, A high score mcans the
sensor will soon enter alarm or will remain there. Alow score
mcans the sensor will remain in the nominal range or emerge
from alarm soon.

Value Change

A change in the value of a sensor may be indicative of an
anomaly. In order to better assess such anevent, the value
change measure in SELLMON compares a given value change
to historical value changes seen on that sensor. The score
reporied is based on the proportion of previous value changes
which were less than the given value change. It is maximum
when the given value changg is the greatest value change. seen
to date on that sensor. It is minimum when no value change
has occurred in that sensor.

2.2 Model-Based Anomaly Detection Methods

Although many anomalics can bc detected by applying
anomaly modcls 10 the behavior reported atindividual sen-
sors, the most robust monitoring requires reasoning about
interactions occurring in asystem and detecting anomalies in
behavior reported by several sensors.

The three model-based sensor importance scores in SEL-
MON arc deviation, sensitivity, and cascading alarms. While
deviationonly requires that sonic form of simulation be avail-
ablc for gencraling sensor valuc predictions, sensitivity and
cascading alarms require the ability tosimulate and rcason
with a causal madelof the syslem being monitored.

in the next section, wc describe the usc of cvenl-driven
simulation and explicit causal reasoning 10 support model-
based monitoring methods.  Towards this cad, wc include
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Figure 3: A generic causal graph.

some dctail on two tools wc have built within the SELMON
project: our EDSE event-driven simulator which accepts a
causal model [14], and EDISEL, our causal modcling language
[2L

Deviation

The deviationmeasure is our extension of the traditional
method of discrepancy delection. As in discrepancy detec-
lion, comparisons arc made between predicted and actual sen-
sor valucs, and differences arc interpreted 10 be indications of
anomalics. This raw discrepancy is enteredinto a normaliza-
tion process identical 10that used for the value change score,
and it is this representation of relative discrepancy which is
reporied. 1'he deviation score for a sensor is minimum if there
is no discrepancy and maximum if the discrepancy belween
predicted and actual is the greatest seen 10 dale on that sensor.

2.2.1 Causal Analysis

Many forms of rcasoning relevant to monitoring can be
supporled by a causal model of a system. For the purposes
of this discussion, wc define a causalmodel to be onc which
provides explicit information about the quantities of asystem,
the structural connections through which quantitics interact,
and the mechanisms which govern how behavior propagates
from onc part of the system 10 another.

With this kind of information, it is possible to reason about:
How faults may manifest in anomalics al sensors which arc
causally downstrcam and physically distant from the location
of a faull. }1ow the information reporied al onc sensor may
be implicit in snot her, and hence redundant. 1 low several
sensors may be in an inconistent state although each is within
its nominal range and reporting a predicted value. How an ap-
parently benign current statc may contain the sceds of highly
undesirable behavior about to manifest in the near future. All
of these ideas on how to employ causal reasoning for monitor-
ing purposes arc being explored inthe SELLMON projeet. The
most fully developed idea at this time is that of using a causal
model 10 reason about future behaviors. In SEI.MON, this
reasoning is embodicd in the two causal measures sensitivity
and cascading alarms.

Sensitivity measurcs the poltential for a large global per-
turbation 10 develop from current statc. Cascading alarms
measures the potential for an alarm scquence 10 develop from
current state. Both of these anomaly measures usc a causal
simulator to gencrate predictions about future states of the
system, given current stale. Current stale is taken 10 be de-

fined by boththe current values of system paramelers (not all
of which may be sensed) and the latent events already res-
ident on the simulator agenda. The measures assign scores
to individual sensors according to how the system parameter
corresponding to a sensor participates in, or influcnces, the
predicted global behavior. Roughly speaking, a sensor will
have a high sensitivity score when behavior originating at that
sensor causes a large amount of change clsewherc in the sys-
tem. A sensor will have a high cascading alarms score when
behavior originating al that sensor causes a large number of
alarms clscwhere in the system.

Figure 3shows a generic causal graph.System paramciers,
somc of which will have associated sensors, arc represented
by nodes in this graph. Arcs represent the mechanisms which
determing if and how syslem parameters affcct othier system
parameters. I'here arc two node subscls of interest relative
{0 a given system parameter, or quantity node Q. These arc
CausesQ, the sct of quantity nodes upstream from Q in the di-
rected causal graph, and E f fectsg, theset of quantity nodes
downstream from Q in the dirccted causal graph. In comput-
i ng tact 1scn SOI'S sensitivity or crowding alarms SCOre, we
arc interested only in behavior which “passcs through” the
quantity corresponding (o the given sensor. The only events
processed by the simulator arc those involving the quantity
itself, its causes, or itscffects. Initially, the simulator only pro-
cesses events duc 10 the quantity itself or its causes. However,
once an cvent at the guantity itself is processed, the simula-
tor also processes events among the effects of the quantity.
These events arc saidto derive from the quantity. An event
a aquantity which is notreachable from Q is not processed
by the simutator, even if it is on the simulator agenda, for
such behavior cannot have beeninfluenced by the quantity of
interest. The only simulated cvents which contribute to asen-
sor’s sensitivity or cascading alarms score arc those involving
the quantity itself or its (scnscd) effcels. Simulation procecds
until astated future time is reached. Currently, WC assume
there 1S no feedback, i.e., the causal graph is a directed acyclic

graph.




Sensitivity
The algorithm used to compute a sensor’s seasifivity score
is as follows:

Given current system stale
(quantity values al to and queued cvents)
For cach quantity Q:
Retricve Causesg
Retricve B f fectsq
Simulate only those events originating or deriving from a
quantity g € {Q} U Causesg
Collcct all cvents at a sensed quanlity Q. € F f fectsg
occurring al lime t < 1o + Atl:
I .ct

= _1Qe(t) — Qe(to)]

Sensitivity(Q Mo, Change(Q )

tpis the current time. At is the maximumtime forward 10
simulatc. Maz.Change(Q.) refers to the largest historical
value change seen on a given sensor. The values which arc
summed arc the ratios between the maximum predicled value
change for a given sensor Q. and thec maximum historical
valuc change for that sensor. The sensitivity SCOre is maximum
when every sensor causally downstream from a given sensor
is predicted 10 exhibititslargest value change seen 10 dale.
Thus the maximum score for a given sensor is equal to the
number of sensors causally downstream fromthat sensor in
the causal graph. The sensitivity SCOre is minimum when no
changes arc predicted 10 occur causally downstream from a
given sensor. All sensitivity SCOres arc zero if the system s in
a perlectly stcady state.

Notc that for a given sct of predicted, causally related
cvents, a sensor’s score is monotonically higher the closer
itis to the causal source Of that global behavior. Thisin-
formation may be uscful, for example, in aiding operators in
sclecting a single control action with the greatest impact.

Cascading Alarms

The algorithm used to compute a sensor’s cascading alarms
score is as follows:

Given currentsystem stale
(quantity values al ?p and queued cvents)
For each quantity Q:
Retrieve C'ausesg
Retricve Ef fectsg
Simulate only those events originating orderiving from a
quantity g € {Q} U Causesq
Collect all events at a sensed quanlity Q. € E f fectsg
occurring attime t < to +At:
121

CascadingAlarms(Q) = E In. Alarm(Q. (1))

In_Alarm(Q.(t))is 1 if the quantity Q.is in an alarm
range at simulated lime 2;othcrwiscitis O. The cascading
alarms score is maximum when every sensor causally down-
strcam from a given sensor is predicted tobe in alarm. Thus
the maximum score for a given sensor is equal tothe num-
ber of sensors causally downstrcam from that sensor in the

Mechanism d
Transfer =» A

Delay =5 b

Nk

Figure4: Causal simulation in EDSE: A mechanism evaluated
at lime t; will propagatcits value al tiq ;.

causal graph. The cascading alarms score is minimum when
no alarms arc predicted to occur causally downstream from a
given sensor,

Note that the cascading alarms score is designed to give
monotonically higher scores to sensors thal arc closer to the
causal source of an alarm sequence. This kind of information
may be extremely valuable toanoperator attempting 10 inter-
pret a situation where multiple alarms appeared between onc
polling of the sensors and the next.

2.3 Causal Simulation and Modeling

Inthis section, we briefly describe the EDSE  cvenl-driven
causal simulator and the EDSEL. causal modeling language
which support the SELLMON system.

Causalmodcls arc an abstraction for describing the behav-
ior of a system by representing the physical processes occur-
ring withinthe system as discrele functions to be evaluated.

A causal model characterizes a physical system in terms of
statc variables and causal influence relations among the vari-
ables. In the causal graph defined by the state variables and
in flucnce relations, changes in any variable may be propagated
10 other variables through the influence relations. Causal sim-
ulation isthe process of tracking changes in Variables and
propagating them to other variables through influence rela-
I ions, thereby producing a ncw sct of changes. Implicitin the
nolion of causality arc thc concepls of event and causal time:
Events comprise changes in slate variables duc 10 a specific
influcnce relation and with respect to a specific moment in
time. I'hereby, causal lime moves forward duc todclays in
the propagation of changes in the causal model.

In our causal modeling language, called EDSEL,, causal
models arc represented in terms of these primitives. Causal
limeiscxpressed as a monotonically increasing sequence of
integer-valuedinstants. Each slate variable is denoted by a
quantity. Each influcnce relation is described by a mechanism
which encapsulates a set of inpul quantitics, a set of output
quantitics, along with transfer and delay functions. During
simulation in EDSE | the transfer function is cvaluated with
thc mechanism input quantitics to produce a value that will
be propagated 10 each of the mechanism output quantitics.
The delay function is simultaneously evaluated 10 produce an
offsct from the current simulation lime. Value propagation
takes place, al the relative time returned by the delay function.
Figure 4 visualizes mechanism evaluation. Simulation con-
tinucs until a user-specilkd lime limit is reached or the model
reaches quicscence.
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We adopt a componcent-cen tered approach to causal mod-
cling. This modelin g apjroach distinguishes the constituents
of the system being modeled as components and the structural
connections among them. A physical component is intuitively
defined asadiscrete clem ent of a physical system. By analogy,
a causal component is an enfity that encapsulates the behavior
of Itic corresponding ph ysical component as a whol C.

A connection is an abstraction which characterizes the inter-
action pathways between components. A connection within a
physical sysicm ecnables material or information flow between
components, Similarly, causal connection allows quantity
valucs 10 be propagated bet ween components.

2,3.1 Modeling the SSF EATCS

We have commenced a modeling cffort to build a causal
model of the SSF EATCS, using our G2-bascd 100l called
MESA [31 which gencrates the EDSEL representation of a
causal model from a higher-level abstraction of acomponent-
centered model together with the mechanisms which repre-
sentthe physical behavior of the components. The MESA-
gencrated model is then loaded into EDSE to perform an
cven[-driven simulation of the EATCS.

Figure S represents a simplified schematic of the EATCS,
showing all of the major components. The Rotary Fluid Man-
agement Device (RFMD) pumpsliquid ammoniato the Evap-
orator loop. Flow control from the REMI 10 each of the
evaporators is provided by cavitating venturis.In a normal
venturi with fixed inlet conditions, reducing the ¢xit pressure
results inan increased flowrate. The TCS cavitating venturi
passively provide flow stability even with downstream pres-
sure variations resulting from heat load changes. A two-phasc

fluid mixture of liquid and vapor is generated al cach evapora-
tor by the particular heat load being serviced. I'hclwo-phase
mixture is returned to the REMD, which separates the liquid
from the vapor by centrifugal force. The REMD pumps the
vapor to theradiators, which condensc the fluid to asubcooled
statc by rejecting heat to space. The Back Pressure Regulating
Valve (BPRV) maintains sctpoint temperature by controlling
system pressure. REMD fluid Ievel changes are duc primar-
ily to varying hcal loads and arc handled byan accumulator
with an internal metal bellows separating the liquid and vapor
sides.

The compon ent model schematic of a simplificd EATCS
evaporator loop is shown inFigure 6. Two cavitating ven-
turis, CV1 and CV2, regulate flow to two cvaporators, EV1
and EV2,opcrating in parallcl. The REMD is modeled as
a flow and pressurc source for the cvaporator loop, and di-
vide and jointees DV1and JT1represent the flow junctions
in the loop. Hland H2 represent the heat sources for the
evaporators. The modeler creates instances of these compo-
nents from a component library which contains the dcfini-
tions of component classes. theirinpul and output quantitics,
and the mechanisms which encapsulate the transfer and delay
functions withthc quantitics. An cxample Of a component
definition for the cavitating venturi is shown in Figure 7.
This representation is built by a developer in MESA for the
component library, ndthe instantiation of the actual under-
lying component quantitics, transfer and delay functions, and
the inter-component connections is handled automatically by
MESA when the componen t model schematic is built. I'bus,
the modeler is freed from details of building the causal model
directly in EDSEL.
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The component definition of the venturi as shown in Fig-
ure 7 shows the flow of input quantities through transfer func-
tions o output quantitics for each state variable that describes
a cavitating venturi, These transfer functions arc based on
the laws of physics, fluid dynamics and thermodynamics, and
contain a complete mathematical description of the steady
slate behavior of the device. Each transfer function by defini-
tion may have multiple inputs, but produces a single output.
In cases where infermediate calculations must be made to de-
termine an output quantitiy, such as for saluration pressure
and liquid density at the venturi inlet temperature used for
flow rate determination, mechanisms arc chained together to
produce the final result.

Using these generic modeling techniques, a causal model of
the simplificd EATCS evaporator loop has been generated in
EDSEL, and simulations wer¢ executed successfully in EDSE.
Wec are currently working to model the EATCS radiator loop
and the remainder of the RFMD and BPRV. The next step will
be to incorporate sensor objects into the model to support the
model-based sensor importancemeasures in SELMON.

3 Performance Evaluation

The SELMON sensor importance measures are dynamically
computed each time the sensors arc polled. In order to assess
whether SELMON usefully focuses operator attention while
performing robust anomaly detect ion, we performed the fol-
lowing experiment: Wc evaluated SELMON performance in
sclecting critical sensor subsets specified by an SSFECLSS
domain expert, sensors s¢enby that expertas useful inunder-

standing episodes of anomalous behavior inactualt historical
data from ECL.SS testbed operations.

The experiment asked the following two specific questions:
How often did SELMON place a “critical” sensor in the top
half of an overall ordering on the sensors’? and How does SEL-
MON performance compare to traditional monitoring prac-
tice?

Wec used two alternate ways of combining the scores from
the seven sensor importance measures to arrive at an overall
ordering:1) the individual scores were composedarithmeti -
cally (see [81 for details) and 2) the maximum individual
score was taken. Wc also ran SELMON with only the alarm
measure active, to represent traditional monitoring.

The performance of a random sensor selection algorithm
would be expected to be about 50.070: any particular sensor
would appear in the top half of the sensor ordering about half
the time. Table | shows the results of our experiment. The
first column identifies onc of the anomaly episodes specificd
by the domain expert, The second column shows the overall
“hit” rate for each episode using the alarm measure only,
i.c., the pereentage of lime SELLMON placed the given sensor
in the top half of the sensor ordering generated by the alarm
mcasurc. The third column shows the hit rate using arithmetic
composition of the scores. The fourth column shows the
hit rate when the maximum score is used. Finally, the fifth
column shows the hit rate when either way of combining the
scores is used.

EPISODE Alarm | Composed | Max [Either
High Flow Rate 97.8 | 945 835 [-94.s
Sensor Malfunction 100.0 100.0 100.0 | 100.0
Unibed Loading 48.9 56.6 90.6 90.6
Pre-Healer Off 100.0 100.0 81.1 100.0
Emergency Shutdown | 100.0 100.0 100.0 | 100.0
Pressure Fluctuations 98.6 100.0 90.1 98.6
High Pressure 925 95.5 91.0 92,5
All 76.3 | 79.8 88.1 9s.1

Table 1: SELMON Performance at selecting critical sensor
data.

These results show that SELMON performs much betler
than random atreplicating the at tent ion focusing of an ECLSS
domain expert. More to the point, when the maximum sensor
importance measure is used for each sensor, SELMON per-
forms considerably better than the traditional practice of limit
sensing, Finally, when both methods of combining the indi-
vidual scores are available (noting that, at the current time,
wc do nol have an automated technique for determining in
context which method is more appropriate, and such determi-
nation would be left to the operator) SELMON performance
is quite notable, detecting actual anomalies 95% of the time.

Thesc results lend credibility to our premise that the most
effective monitoring system is one which incorporates sev-
eral models of anomalous behavior, and takes multiple views
of sensor importance. The best, most experienced mission
operators arc already remarkably effective at knowing when
something is going wrong on a space platform, Our aimis
to offer a more complete, more robust set of techniques for
anomaly detection, to make mission operators even moree{-
fective, or to provide the basis for an automated monitoring
capability.
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Pre-Heater fails
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Figure 8: A failure on the waler side of SSF ECLSS.

We plan 10 extend this empirical analysis of SELMON v X Grah

performance in two directions: 1) using boththe alarm and
deviation measures as the bascline for performance compar-
son, to better represent traditional monitoring techniques,
and 2) 10 examine the performance of the causal measures
sensitivity and cascading alarms separately, possibly in arli-
ficial domains, where the topology of the causal graph and
the mechanisms can be specified to better analyze how these
measures perform under different situations of undesirable
behavior propagation.

“rem BB

Besides examining SELMON performance at the statistical
level, we have also examined individual examples of success-
ful anomaly dctection in SELMON. The following example
illustrates how SELLMON highlights asubtle manifestation of
an anomaly which the traditional monitoring techniques fail

X110

Figure 9: ECUS System Pressure During Abnormally Nor-

to detect. mal Episode.
, X Graph
During an episode when the ECLSS testbed pre-heater o NS
failed (sec the schematic in Figure 8), system pressure, which now - | e S N B
normally oscillates within a known range, became morc sta- 7,000 .
ble (sec Figure 9), This “abnormally normal” bchavior is 0m- 1 r
not detected by limit sensing because the system pressure 00 - /
remains firmly in the nominal range; nor by discrepancy de- oo - ‘
tection, for the predicted value is roughly the average of the o /
values over time, this oscillating behavior being unmodelled. oo .
Howcver, the SELMON informativeness component of the oo - 4/
surprise meas urc riscs during this episode. Informativeness 6>003- ™
rises when the frequency distribution across the range of sen- avw — g |
sor values moves away from a flat distribution towards a 610 - -
“spike” distribution (sec Figure 2). A suddenly stable system S

pressure Tesullsin onc of the value ranges for sysiem pres-
sure beginning to dominate the frequency distribution (s¢e
Figure 10). SELMON provides the mcans of detecting and
reasoning about this kind of subtlc anomaly.

Figure 10: Informativeness of ECLSS S ystem Pressure Dur-
ing Abnormally Normal Episode.




4 Towards Applications

Wec arc working to apply the SELMON techniquesin an ad-
vanced monitoring and diagnosis prototype for the SSE Ex-
ternal Active Thermal Control System (EATCS). The Ther-
mal Control System Automation Project (ICSAP){11] is
developing a Jmow]cdgc-based systemto perform Fault | )c-
tection, isolation and Recovery (FDIR) on the EATCS. The
TCSAP software is a hybrid advanced automation system
implemented in a commercial rczzl-lime expert system shell
called G2. 11 uses a combination of conventional program-
ming, rule-based technology, and mode]- based reasoning 10
provide cx(ensive diagnostic power and flexibility beyond
the capabilities based on alarm thresholds and limit sensing,
Within TCSAP, the SELMON empirical sensor importance
measures described earlier have been implemented, and test-
ing and cvaluation have begun in ground-bawd Thermal Test
RBed runs at NASA Johnson Space Center (JSC).

Also at NASA JSC, wc arc exploring applications of the
SEI.MON approach to Spacc Shuttle (STS) operations. In
particular, wc are examining the Environmental Emergency
and Consumables Management (EECOM) subsystem of STS.
This is the life support systecm for STS, the analog of ECLSS
for SSK,

The seven anomaly measures in SELLMON arc designed 10
be applicd separately. This feature allows a SEL.LMON-based
application to be prototyped and cvaluated in an cfficient man -
ncr. As long as sensor data is available, on-line or historical,
the four empirical (non-rnodcl-based) anomaly measures can
beimmediately tested. If any form of simulation is available,
the deviation measure also can be tested. It is only the two
causal measurcs which must await for the causal modeling
process to complcte. Thus SELLMON avoids a common lim-
ilation of Al-based systems development: thatno delivery is
possible, even a prototypc system, before a large knowledge
cngincering or modeling investment is made.

SFuture Work

An unresolved area in SELLMON is developing a wcli-founded
method for utilizing allthe sensor importance measures, Wc
have working concepts for how 10 compose the individual
measurcs info a total sensor importance score, but we consider
this an arca for further work, A thecoretical or empirical anal-
ysis MAY provide iNsight on the Most appropriate composition
technique, onc thatis tailorablc to different applications.

W recognize that an important component of the SELLMON
approach is the ability to provide explanations or interpreta-
lions of why a particular sensor has been highlighted and is
more worthy of opcrator attention than other sensors. Other
future work in the SELMON projccl wiii complement cxist-
ing sensor ordering and anomaly detection capabilitics with
modc,l-based capabilitics for characicrizing anomalies by their
temporal and spatial extent, and focusing attention according
10 multiple viewpoints (causal priority, proximity 10 control
points, potential for irreversible damage, tic.).

la related work, we arc also investigating the problem of
sensor placement during design [4].

6 Summary

Wec arc developing techniques 10 support real-time monitor-
ing through sensor sclection, the moment 1o moment focusing

of attcntion on a subset of the available sensor data. Sen-
sor sclection is based on a set of importance criteria using
diffcrent modcels of what constitutes an anomaly. The com-
putational rcalizations of these importance criteria draw on
concepts from model-based reasoning, statistics, and infor-
mation theory. Expcrimental results show that our sensor
sclection techniques arc cffcc.live at highlighting the sensors
deemed critical by a domain expert for understanding actual
anomalous episodcs from the Space Station Fredom Envi -
ronmental Control and Lifc Suppor( System testbed. These
resulfs also suggest thata monitoring system which cmploys
multiplc models of anomalous behavior is more cffective than
onc based on the traditional monitoring concepts of alarm
thresholds and discrepancics.,
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